
Introduction

Thermally stimulated solid-state reactions, such as

decompositions, solid-solid reactions, crystalliza-

tions, desorption of gases adsorbed on solid surface

and sintering are heterogeneous processes. It has been

generally assumed that the reaction rate of such pro-

cesses can be kinetically described by the following

expression [1]:
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where k is the constant rate, A is the preexponential

factor, E is the activation energy, R is the gas con-

stant, T is the temperature, t is the time and � is the

extent of reaction ranging from 0 before the process

starts to 1 when it is over. In the case of desorption of

gases adsorbed on solid surfaces [2] the extent of the

reaction is defined as a function of the coverage, �,

and when sintering processes are concerned, the reac-

tion extent is defined by the ratio between the shrink-

age, �L, and the starting length of the probe, L0 [3, 4].

Additionally, f(�) (or alternatively, f(�L/L0) or f(�) is

a term that describes the dependence of the reaction

rate on the reaction mechanism.

Many of the experimental methods used to per-

form kinetic analysis of solid-state reactions are based

in the measurement of the evolution of an integral

magnitude, i.e. proportional to the extent of reaction,

such as weight loss, released gas, amount of contrac-

tion, as a function of temperature. To perform the

evaluation of such experimental data, it is necessary

to integrate Eq. (1). If the reaction is conducted at a

constant temperature, the integration of Eq. (1) leads to
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The most common heating profile used for

studying solid-state reaction is the linear heating pro-

gram. Under these experimental conditions, T
changes in a wide range of values and an entire �–T
curve is recorded in a single experiment. For linear

heating rate conditions Eq. (1) can be written
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� being the heating rate.

The integration of Eq. (4), after rearranging,

leads to
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where x=E/RT.

Under linear heating rate program, Eq. (3) does

not have an exact analytical solution to p(x) and,

therefore, the solution cannot be expressed in a closed

form [5]. Thus, a number of approximated equations

have been proposed for p(x) under linear heating pro-

gram. The number of publications where these inte-

gral methods have been used for determining activa-

tion energies is vast. Thus, according to ISI Web of

Science data base, about 4000 citations can be found

in the literature for the most popular approaches
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(Coats and Redfern [6, 7], Horowitz and Metzger [8]

and Doyle [9, 10]. More than 1200 of these citations

have been found in the last 5 years, many of them in

this Journal [11–28]. Despite the popularity of these

approximations, their accuracies for the estimation of

the kinetic parameters are still in doubt, thus some au-

thors have claimed that these methods are not proper

for determining accurate kinetic parameters [29–32].

Some studies have estimated the errors in the approxi-

mated p(x) functions by comparing the resulting val-

ues with those calculated by numerical integration,

concluding that the errors are quite large. These find-

ings have been used as an argument for invalidating

these approximated equations in the estimation of the

kinetic parameters. Nevertheless, the aim of the afore-

mentioned approximations is the determination of the

activation energy and not the accurate computation of

p(x).We have shown in recent papers [33, 34] that the

error in the determination of the activation energy

from the Coats and Redfern approach is lower than

1.3% even for x=10. According to the Coats and Red-

fern approach p(x) 	e-x/x and Eq. (4) becomes
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where the subscript a refers to the apparent values of the

kinetic parameters obtained from the above approach.

It is noteworthy to point out that all the methods

of kinetic analysis generally used have been devel-

oped by assuming that the preexponential factor can

be considered as a constant all over the temperature

range investigated. However, several authors [35–37]

after extending the theory of the activated complex to

the thermal decomposition of single solid state reactions

proposed that the preexponential factor is connected

with the temperature through the following relationship

A=A0T
n (6)

where A0 is a constant and the exponent n is equal ei-

ther to 1 in the case of the thermal decomposition of a

single solid reactive or to 1/2 for reactions between a

gas and the surface of a solid. Varhegyi [38],

Dollimore [39] and Segal [40] have considered other

positive values for this exponent. On the other hand,

values of n ranging from 0 to 2.5 have been proposed

for the case of reactions of desorption of gases from

the surface of solids [41–43]. Moreover, values of n
from –3/2 to 0 have been proposed for shrinkage pro-

cesses depending on the sintering mechanism [4].

The scope of this work is to carry out a system-

atic analysis of the error involved in the activation en-

ergy determined from conventional methods when the

preexponential factor is dependent on the temperature.

Theoretical

Differential method

If Eq. (6) is fulfilled, Eq. (1) becomes
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It is a constitutive equation that must be accom-

plished whatever would be the thermal pathway fol-

lowed for reaching a particular �–T–t point [44, 45].

Thus, independently if isothermal or non-isothermal

methods are used, the slope of the plot of

ln[(d�/dt)/f(�)] vs. 1/T is connected with the real acti-

vation energy, E, through the following expression
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However, if it were omitted the dependence of A
on T and were considered that the preexponential fac-

tor remains constant all over the temperature range

(i.e. A=A0), according with Eq. (1), we get
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where Ea represents the apparent activation energy.

The relative error, 
, of the activation energy (Ea)

can be defined by the following equation:
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Thus, from Eqs (8), (9) and (10), we get the fol-

lowing expression for the relative error:
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The relative error percentages computed from

Eq. (11) for different values of x=E/RT and the expo-

nent n are shown in Table 1.

Integral methods

If the rate constants at different temperatures were de-

termined by the isothermal method and the

preexponential factor were changing with the temper-

ature as shown by Eqs (6), (2) would become

g A T e t kt( )� � �0

n –E / RT (12)

The rate constant k at a given temperature could

be obtained from the slope of g(�) vs. t. According to

Eq. (12), the slope of the plot of the rate constant de-

termined at different temperatures vs. 1/T (i.e.

dlnk/d(1/T)) would be connected to the activation en-

ergy through a relationship identical to that expressed
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by Eq. (8). Moreover, an expression identical to

Eq. (9) would be obtained for the relationship be-

tween dlnk/d(1/T) and Ea by assuming that A remains

constant all over the temperature range following

Eq. (2). This means that the relative errors in the acti-

vation energy calculated from isothermal data by the

integral method are identical to those calculated in

Table 1 for differential methods if it is not taken into

account the real correlation between A and T.

Equation (7) cannot be directly integrated if the

conversion as a function of the temperature is re-

corded under a linear rising temperature. In such a

case, under a heating rate d�/dT =�, Eq. (7) would be

rearranged in the following form:
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Integration of Eq. (13) leads to
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which, after doing the variable change x=E/RT, would

be rearranged in the following way
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Integrating by part the pn(x) function results:
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hn(x) being the series between brackets.

If the preexponential factor were considered as

constant and the Coats and Redfern method were used

for performing the kinetic analysis, the apparent acti-

vation energy, Ea, would be obtained from the slope

of the plot of ln[g(�)/T2] vs. 1/T:
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The real value of the left hand side of Eq. (17) as

a function of the true activation energy can be easily

determined from Eqs (15) and (16):
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The relative error in the activation energy would

be estimated from Eqs (17) and (18) after taking into

account the error definition introduced by Eq. (10):
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The error percentages determined as a function

of x=E/RT from Eq. (19), after computing the function

hn(x) using a tolerance of 10–5, are shown in Table 2.

The results obtained show that in the case that

the preexponential factor were independent of the

temperature (i.e. n=0), the error in the activation en-

ergy determined from the Coats and Redfern method

is very low for x>5. If we bear in mind that values of

E/RT lower than 5 have not physical meaning, we can

conclude that the Coats and Redfern method is quite

accurate for determining the activation energy of het-

erogeneous processes in spite that the standard devia-

tion of the p(x) function determined from this ap-

proach with regards to the true value are rather large

[46]. However, Table 2 shows that the errors in the

activation energy are considerably larger if it is deter-

mined by assuming that A is independent of T when it

is really dependent on T, according to Eq. (6). These

results are quite similar to those included in Table 1.

The slightly larger values of the error shown in Ta-

ble 2 with the regards to the corresponding values

shown in Table 1 are due to the small additional error

introduced by the integral approach of the Arrhenius

equation under non-isothermal conditions.
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Table 1 Relative error for the activation energy obtained from isothermal and differential non-isothermal data when the
preexponential factor depends on the temperature (A=A0T

n).

x
n

–1.5 –1 0 0.5 1 1.5 2 2.5

5 –30.00 –20.00 0 10.00 20.00 30.00 40.00 50.00

10 –15.00 –10.00 0 5.00 10.00 15.00 20.00 25.00

15 –10.00 –6.67 0 3.33 6.67 10.00 13.33 16.67

20 –7.50 –5.00 0 2.50 5.00 7.50 10.00 12.50

30 –5.00 –3.33 0 1.67 3.33 5.00 6.67 8.33

50 –3.00 –2.00 0 1.00 2.00 3.00 4.00 5.00

100 –1.50 –1.00 0 0.50 1.00 1.50 2.00 2.50



Results

It would be of interest to check the above conclusions

by analysing a set of DTG and TG curves simulated

by assuming a dependence of A on T according with

Eq. (6). The DTG and TG curves have been calcu-

lated from Eqs (7) and (14), integrating this last equa-

tion by numerical methods with a tolerance of 10–5 by

means of the MathCad software. Figure 1 shows the

TG and DTG curves simulated by assuming a heating

rate �=10 K min–1, a first order kinetic (i.e.

f(�)=(1–�) and g(�)= –ln(1–�)) and the following ki-

netic parameters: A=1.395T2 and E=74 kJ min–1.

Then, the kinetic parameters of the DTG curve have

been determined from the plot of the (d�/dt)/f(�) val-

ues calculated from the � values taken from Fig. 1 as

a function of the corresponding values of 1/T, accord-

ing with Eq. (1). The apparent activation energy and

the apparent preexponential factor obtained from the

slope and the intercept of this plot are shown in Table

3 together with the error given by Eq. (10). The appar-

ent kinetic parameters obtained from the TG curve af-

ter plotting the values of ln[g(�)/T2] calculated from

the � values taken from this curve vs. 1/T, according

to the Coats and Redfern approach given by Eq. (5),

are also shown in Table 3 together with the error in

the activation energy determined from Eq. (10).

If we take into account that x=E/RT	15 for the

TG and DTG simulated curves, we can conclude that

the errors in the activation energy reported in Table 3

are in excellent agreement with those forecasted in ta-

bles 1 and 2, respectively. It is noteworthy to point out

that a very good agreement between the errors esti-

mated in Table 1 and those calculated from �-t and

d�/dt- t isothermal plots has been also found, but the

analysis of the simulated data has not been included

for the sake of the brevity.

The above results point out the error percentages

in the calculation of the activation energy would be

rather large if the preexponential factor is dependent

on the temperature and the kinetic analysis is per-

formed by assuming that A is a constant. Moreover,

this error only depends on the value of E/RT and not

on the method used for recording the experimental

data; in other words, for a given mean value of x, iso-

thermal and non-isothermal methods lead to the same

error in the estimation of the activation energy. More-

over, the errors introduced for the most popular ap-

proach of the Arrhenius integral (Coats and Redfern)

for the kinetic analyses of rising temperature experi-

ments are insignificant when compared with the er-

rors introduced by ignoring the dependence of the

preexponential factor on the temperature.
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Table 2 Relative errors for the activation energies obtained from the Coats and Redfern approach for the Arrhenius integral and
the preexponential factor depends on the temperature (A=A0T

n).

x
n

–1.5 –1 0 0.5 1 1.5 2 2.5

5 –30.93 –20.70 6.48 24.54 45.08 66.64 87.63 107.01

10 –15.40 –10.75 –1.23 3.70 8.79 14.10 19.69 25.59

15 –10.19 –7.04 –0.69 2.51 5.73 8.98 12.26 15.58

20 –7.61 –5.22 –0.42 1.99 4.41 6.83 9.26 11.7

30 –5.05 –3.43 –0.20 1.42 3.05 4.67 6.3 7.93

50 –3.02 –2.04 –0.07 0.91 1.89 2.87 3.86 4.84

100 –1.50 –1.01 –0.02 0.48 0.97 1.47 1.96 2.46

Table 3 Results of the analysis of the TG-DTG simulated
curves by differential and integral procedures

A/min–1) E/kJ mol–1 Relative error
in E/%

Differential 3.66·106 83.9 13.40

Integral 2.69·106 82.9 12.07

Fig. 1 TG and DTG curves simulated by assuming a first or-

der kinetic model, a heating rate �=10 K min–1 and the

following kinetic parameters: A=1.395 T 2 min–1 and

E=74 kJ mol–1



References

1 J. M. Criado and L. A. Pérez Maqueda. in ‘Sample Con-

trolled Thermal Analysis: Origin, Goals, Multiple Forms,

Applications and Future’; O. T. Sorensen and

J. Rouquerol, Eds.; Kluwer, Dordrecht, 2003, p. 55.

2 R. J. Cvetanovic and Y. Amenomiya, Adv. Catal.,

17 (1967) 103.

3 N. N. Rahaman, ‘Ceramic Processing and Sintering’, Mar-

cel Dekker, New York 1995, p 398.

4 R. M. German, ‘Sintering Theory and Practice’, John

Wiley, New York 1996, p 100.

5 L. A. Pérez-Maqueda and J. M. Criado, J. Therm. Anal.

Cal., 60 (2000) 909.

6 A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.

7 A. W. Coats and J. P. Redfern, J. Polym. Sci., B-Polym.

Letters, 3 (1965) 917.

8 H. H. Horowitz and G. Metzger, Anal. Chem.,

35 (1963) 1464.

9 C. D. Doyle, Anal. Chem., 33 (1961) 77.

10 C. D. Doyle, Nature, 207 (1965) 290.

11 H. Barkia, L. Belkbir and S. A. A. Jayaweera, J. Therm.

Anal. Cal., 76 (2004) 623.

12 A. Aouad, M. Benchanaa, A. Mokhlisse and A. Ounas,

J. Therm. Anal. Cal., 75 (2004) 887.

13 J. A. Amorim, S. A. Eliziario, D. S. Gouveia,

A. S. M. Simoes, J. C. O. Santos, M. M. Conceicao,

A. G. Souza and M. F. S. Trindade, J. Therm. Anal. Cal.,

75 (2004) 393.

14 H. Zhao, J. Gao, Y. Li, and S. Shen, J. Therm. Anal. Cal.,

74 (2003) 227.

15 J. J. Zhang, R. F. Wang, S. P. Wang, H. M. Liu, J. B. Li

and J. H. Bai, J. Therm. Anal. Cal., 73 (2003) 977.

16 G. Singh and D. K. Pandey, J. Therm. Anal. Cal.,

76 (2004) 507.

17 M. C. D. Silva, M. M. Conceicao, M. F. S. Trindade,

A. G. Souza, C. D. Pinheiro, J. C. Machado and

P. F. A. Filho, J. Therm. Anal. Cal., 75 (2004) 583.

18 M. Sekerci and F. Yakuphanoglu, J. Therm. Anal. Cal.,

75 (2004) 189.

19 J. Rocco, J. E. S. Lima, A. G. Frutuoso, K. Iha,

M. Ionashiro, J. R. Matos and M. E. V. Suarez-Iha,

J. Therm. Anal. Cal., 75 (2004) 551.

20 F. M. L. Pontes, S. F. Oliveira, J. G. P. Espinola,

L. N. H. Arakaki, M. G. Fonseca and C. Airoldi, J. Therm.

Anal. Cal., 75 (2004) 975.

21 H. R. C. Ouriques, M. F. S. Trindade, M. M. Conceicao,

S. Prasad, P. F. A. Filho and A. G. Souza, J. Therm. Anal.

Cal., 75 (2004) 569.

22 M. S. Masoud, S. A. Abou El-Enein, H. A. Motaweh and

A. E. Ali, J. Therm. Anal. Cal., 75 (2004) 51.

23 N. T. Madhu, P. K. Radhakrishnan, M. Grunert,

P. Weinberger and W. Linert, J. Therm. Anal. Cal.,

76 (2004) 813.

24 L. G. Lage, P. G. Delgado and Y. Kawano, J. Therm.

Anal. Cal., 75 (2004) 521.

25 M. V. Kok, G. Pokol, C. Keskin, J. Madarasz and

S. Bagci, J. Therm. Anal. Cal., 76 (2004) 247.

26 S. S. Gawali, R. Dalvi, K. Ah and S. Rane, J. Therm.

Anal. Cal., 76 (2004) 801.

27 N. Deb, J. Therm. Anal. Cal., 75 (2004) 837.

28 G. W. Chadzynski, V. V. Kutarov and A. Staszczuk,

J. Therm. Anal. Cal., 76 (2004) 633.

29 G. R. Heal, Thermochim. Acta, 341 (1999) 69.

30 G. R. Heal, Instrum. Sci. Technol., 27 (1999) 367.

31 J. H. Flynn, Thermochim. Acta, 300 (1997) 83.

32 J. H. Flynn, Thermochim. Acta, 203 (1992) 519.

33 J. M. Criado and A. Ortega, Intern. J. Chem. Kinet.,

17 (1985) 1365.

34 A. Ortega, L.A. Pérez Maqueda and J. M. Criado,

Thermochim. Acta, 282/283 (1996) 29.

35 R. D. Schultz and A. O. Dekkar, J. Phys. Chem.,

60 (1956) 1095.

36 R. D. Shannon, Trans. Faraday Soc., 60 (1964) 1902.

37 H. F. Cordes, J. Phys. Chem., 72 (1968) 2185.

38 G. Varhegyi, Thermochim. Acta, 25 (1978) 201.

39 D. Dollimore, G. A. Gamlen and T. J. Taylor,

Thermochim. Acta, 51 (1981) 253.

40 E. Segal, Thermochim. Acta, 42 (1980) 357.

41 J. M. Soler and N. García, Surf. Sci., 124 (1983) 563.

42 H. Ibach, W. Erley and H. Wagner, Surf. Sci.,

92 (1980) 29.

43 M. J. Dresser, T. E. Madey and T. J. Yates, Surf. Sci.,

42 (1974) 533

44 L. A. Perez-Maqueda, J. M. Criado, F. J. Gotor and

J. Malek, J. Phys. Chem. A, 106, 2862 (2002).

45 L. A. Perez-Maqueda, J. M. Criado and J. Malek,

J. Non-Cryst. Solids, 84 (2003) 320.

46 T.Wanjun, L.Yuwen, Z. Hen, W. Zhiyong and W. Cunxin,

J. Therm. Anal. Cal., 74 (2003) 309.

DOI: 10.1007/s10973-005-6832-3

J. Therm. Anal. Cal., 82, 2005 675

ERRORS IN THE ACTIVATION ENERGIES CALCULATED BY ASSUMING THAT A IS CONSTANT


